Enhanced mixing in laminar flows using ultrahydrophobic surfaces.

نویسندگان

  • Jia Ou
  • Geoffrey R Moss
  • Jonathan P Rothstein
چکیده

Under laminar, microscale flow conditions, rapid mixing can be difficult to achieve. In these low Reynolds number flows, mixing rates are governed by molecular diffusion, and in the absence of enhanced mixing techniques, mixing lengths and residence times can be much longer than most applications will allow. A number of active mixing techniques have been developed to improve mixing; however, they can be complex to implement and expensive to fabricate. In this paper, we describe a passive mixing method that utilizes a series of ultrahydrophobic surfaces. Our previous experiments have demonstrated that a shear-free air-water interface supported between hydrophobic microridges results in large slip velocities along these ultrahydrophobic surfaces, and significant drag reduction. By aligning the microridges and therefore the air-water interface at an oblique angle to the flow direction, a secondary flow is generated, which is shown to efficiently stretch and fold the fluid elements and reduce the mixing length by more than an order of magnitude compared to that of a smooth microchannel. The designs of the ultrahydrophobic surfaces were optimized through experiments and numerical simulations. A Y-shaped channel was used to bring two streams of water together, one tagged with a fluorescent dye. A confocal microscope was used to measure fluorescence intensity and dye concentration. Quantitative agreement between the experiments and the numerical simulations was achieved for both the flow patterns and degree of mixing. Increasing the angle of the microridges was found to reduce the mixing length up to a critical angle of about 60 degrees , beyond which the mixing length was found to increase with further increases to the angle of the microridge. The mixing enhancement was found to be much less sensitive to changes in microridge width or separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar drag reduction in microchannels using ultrahydrophobic surfaces

A series of experiments is presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness. These ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of microposts and microridges which are made hy...

متن کامل

Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces

A series of experiments are presented which study the flow kinematics of water past drag-reducing superhydrophobic surfaces. The ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of micrometer-sized ridges aligned in the flow direction. The ridges are made hydrophobic through a chemical reaction with an organosil...

متن کامل

Patterning of flow and mixing in rotating radial microchannels

We demonstrate how the speed of mixing under laminar conditions can be appreciably enhanced in concurrent centrifugal flows through straight, low-aspect-ratio microchannels pointing in radial direction in the plane of rotation. The convective mixing is driven by the inhomogeneous distribution of the velocity-dependent Coriolis pseudo force and the interaction of the soinduced transverse current...

متن کامل

Print-and-peel fabricated passive micromixers.

Advection driven mixing is essential for microfluidics and poses challenges to the design of microdevices. Force transducers or complex channel configurations provide means for, respectively, active or passive disrupting of laminar flows and for homogenizing the composing fluids. Print-and-peel (PAP) is a nonlithographic fabrication technique that involves direct printing of masters for molding...

متن کامل

Characterization of ultrahydrophobic hierarchical surfaces fabricated using a single-step fabrication methodology

Hydrophobic surfaces with microscale roughness can be rendered ultrahydrophobic by the addition of sub-micron-scale roughness. A simple yet highly effective concept of fabricating hierarchical structured surfaces using a single-step deep reactive ion etch process is proposed. Using this method the complexities generally associated with the fabrication of two-tier roughness structures are elimin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007